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A method is proposed for calculating the parameters of simultaneous heat and mass 
transfer in turbulent multicomponent liquid films which is based on solving the 
system of differential equations for convective heat conduction and multicompo- 
nent convective diffusion. 

There has been considerable interest in the development of the theory and methods of 
calculation of heat and mass transfer processes in view of their widespread occurrence in 
modern industrial practice. These processes are marked by their complex structures and 
require the simultaneous solution of the equations of momentum, mass, and energy transfer, 
including coupling conditions at interfaces. 

Investigations of heat and mass transfer in laminar and wavy films of liquid [i], in 
liquid films flowing on surfaces with regular roughness elements [2], and in systems consis- 
ting of assemblies of droplets or bubbles [3] have made it possible to establish a unified 
functional relationship for the heat transfer (mass transfer) coefficients [i]. This rela- 
tionship takes the form of a product one of the terms of which is equal to the heat transfer 
(mass transfer) coefficient in the absence of interactions between the heat and mass effects, 
while the other term is general for all the types of processes being considered. 

The modeling of heat and mass transfer processes is considerably more complicated in 
multicomponent systems. The complexity of the theoretical description increases still fur- 
ther when transfer occurs under turbulent conditions. 

The present paper deals with a theoretical investigation of simultaneously occurring 
heat and mass transfer in a turbulent multicomponent liquid film on the basis of solving the 
differential equations for the convective transport of heat and mass. 

Let us consider a film of liquid flowing under gravity along a vertical wall. The x 
axis is directed downwards along the wall, and the y axis is directed perpendicularly to the 
wall. It is assumed as is customary [4-6] that the physical properties of the liquid phase 
are constant, that the overall diffusional transport of enthalpy in the bulk of the phase is 
negligibly small, that there are no external forces, that the condition of phase equilibrium 
exists at the surface of the film, and that the film thickness remains constant. It is also 
assumed that it is possible to neglect the dissipative term in the heat transfer equation 
and the transport of mass as a result of thermodiffusion [7]. The equations for the steady- 
state convective transfer of heat and mass in the turbulent multicomponent liquid film then 
have the forms: 

u (y) = a T  ,, 

u(y) Ox Oy [E(g)] , (2) 

where o(y) is the turbulent temperature conductivity; [E(y)] is the matrix of turbulent dif- 
fusion coefficients. These quantities depend on both the physical-chemical properties of 
the liquid mixture and the hydrodynamic parameters. The column vector C consists of the 
molar concentrations of the components C i and has dimensions of n - i. 

Institute of New Chemical Problems, Academy of Sciences of the USSR, Moscow. 
ted from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. i, pp. 16-22, July, 1989. 
article submitted February 9, 1988. 

Transla- 
Original 

0022-0841/89/5701-0735512.50 �9 1990 Plenum Publishing Corporation 735 



~6 ~ ~ . . . . .  ~ / ?  

ci 
~ - ~ . - - ~  ~ ~ ~ x 

o L  " - . ' \ - u , - " - T f ,  ..... 

Fig .  1. The d imens ion les s  t empera tu re  
(a)  and the  d imens ion les s  c o n c e n t r a t i o n s  
of  the  components (b) as f u n c t i o n s  of  
the length of the contact device for 
Fr = 218; Pr = 10; Sc~ = 1500; Sc~ = 

2500; a I = i.i; a 2 = 0.9; b I = 0.3; b 2 = 
--0.i, for various values of the Re~olds 
number Re: curves i-3: Re = 20,000 
(curve i is for t, curve 2 for ci, and 

curve 3 for c2); curves 4-6: Re = 
5000 (curve 4 is for t, curve 5 for 
cl, and curve 6 for ca); solid lines 
are for the values in the core of the 
phase, dashed lines are for the values at 
the interface, and dot-dashed lines are 
for the values at the wall. 

The boundary conditions are: 

at x=0 T=T0, C=C0; 

a t  g = O  ~T _ 0 ,  aC~ _ 0 ,  i =  1, 2 . . . .  , n - - l ;  
OF Oy 

at y = h  o C'= v.T + w; 
n 

= ~ NhAHh �9 q 
~= 1 

(3) 

(4) 

(5) 

(6) 

In order to express the heat and mass fluxes in terms of the gradients of the tempera- 
ture and the concentrations of the components it is necessary to use Fourier's law and the 

generalized Fick's law. Besides this, additional conditions linking the mass fluxes are 
superimposed on the system; these conditions have various forms for the different processes. 

For example, for the process of multicomponent rectification when the condition of 
n 

equimolarity is used (~ Nl~==0) 
k=l 

the relationship (6) assumes the form: 

O_T_T= r ~ ) [ D l  --,OC ( 7 )  
Oy~ Oy 

where rpi = AH i -- AHn, i = i, 2, ..., n - i, while for multicomponent absorption with an 
inert component (N n = 0) relationship (6) appears as follows: 
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where rAi = ~H i, i = i, 2, 
tion (6) in the form 

..., n -- 1. 

0T. = r ]  )[DI 0C_C; (8 )  
Oy Oy 
For the general case we will therefore write condi- 

L 0___TT = r(T) [D] 0--C-C" (9 )  
ay ay 

where r i = rpi for multicomponent rectification, r i = rAi for multicomponent absorption with 
an inert component, etc. 

The matrix of turbulent diffusion coefficients which appears in Eq. (2) has the follow- 
ing structure [8-11]: 

[E (y)] = [D] + ~o (~=I  ,, (10)  

where CD is the coefficient of turbulent diffusion, which is determined by the hydrodynamic 
conditions, and which can be obtained from the results of turbulence investigations in binary 
mixtures [ii]. 

The matrix [D] is expressed in terms of the coefficients of molecular diffusion of 
binary pairs of the components making up the given mixture. Formulas for evaluating [D] can 
be obtained by use of the molecular theory of gases and liquids [7, 12, 13]. Important pro- 
perties of the matrix [D] are its reducibility to diagonal form and also the fact that its 
eigenvalues are real and positive [4, 13]. Let us now show that the matrix [E] defined by 
Eq. (i0) possesses the same properties. 

Suppose that [L] is the fundamental matrix for [D], i.e., that 

Then 

F-  ! [L] -~[DI[L] = D , .  

[L] -~ [E (y)] [L] = [L] -~ [D] [L] ~- [L]-~D (y )  I[L,]  = ~ D' + 8D (y)'-I~=-~-E'_,, 

w h e r e  E~=DI4 . - eD ,  i - -  1, 2, ..., n - - ] .  
! ! 

Since D i > 0 and s D > 0, then E i > 0 for all values of i. Consequently, the matrix 
[E(y)] is reduced to diagonal form with the use of the same fundamental matrix as [D], and 
has real, positive eigenvalues. 

By analogy with the matrix [E(y)], the coefficient of turbulent temperature conduc- 
tivity which appears in Eq. (i) consists of two terms [5]: 

~(@ = • + %. (y), (ii) 

where ET(y) is the thermal analog of the coefficient of turbulent diffusion cD(Y). 

The system of equations (1)-(2) with the boundary conditions (3)-(5) and (9) repre- 
sents a coupled system of equations of the parabolic type with boundary conditions of the 
fourth sort, which leads to significant difficulties in finding a solution. Hence, by mak- 
ing use of the property of diagonality of the matrices [D] and [E], use is made of a method 
proposed in [14] which makes it possible to transform the initial system into an uncoupled 
form: 

OT _ ~ (a (12)  07" "]; 
u (y) Ox Oy Oy / 

OC' 0 (rE,  OC' 1. 
u(y) a T - -  oF ay ! (13)  

The boundary conditions are: 

at x:0 T=T0, C'=Co;  

aT OC' 
at y = 0 -- 0, --i0; 

ay oy 

at y = h o  C ' = v ' - T @ w ' ,  %__0T = r~r) 0C' 
Oy Oy 

where 

(14) 

(15) 

(16) 
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C ' = [ L I - ' C ,  C~ =lLl-~Co; 

v' =[Ll - lv ;  w' = [Ll-~w; r(f ) =: r(T)[D][L]. 

(17) 

(18) 

Dimensionless variables are introduced through the relationships 

~ _ 4x g u T -- To 
_ --,~-- , v =  - , l  

Re ho ho u T~ -- To 

C ; - - C ' o ,  , i =  1, 2 . . . . . .  n - - 1 ;  
~ ' -  c ; , -  c;~ 

(19)  

(20) 

where 

Ce~ = v;To -[- w;, T e = ( C o l  - -  u2~)/V 1. 

The system (12)-(16) then assumes the final form 

v 01) --Or 0 pr_ ~ + 
O~ 011 v , 

0C 
v (0) 

o~ 

*1=0, 

(21)  

(22)  

0 !(~-Sc, _ l q _ _ _ _  eD = ] 10C ; (23)  

= 0 ,  t = 0 ,  C /=0 ;  (24) 

Ot Oct 
= 0 ,  - -0 ;  (25)  

&] &l 

~1 = 1, ci + air = 1; (26)  
rt--1 Ot Och 

0---4-= X bk ; (27)  k=l &q 

i = 1 , 2  . . . . .  n - - l ,  

where 

To - -  Te r~i (C:i - -  Coi) ( 2 8 )  

~,=v~ c ; , - c ; , ' b ' :  ~ ( T e - - r o )  ' 

Sc; = v/Di. (29)  

Let us consider a motion of the liquid with a flow-mean velocity (v = i) and make the 
assumption that the coefficients of turbulent diffusion and turbulent temperature conduc- 

tivity are equal [15]: 

% (0) = ~r (n) = e (n). ( 30 )  

The relationship (30) is quite a complex function, since the natures of the variation 
of the turbulent transport coefficients are not the same close to the wall, in the core of 
the flow, and close to the interface [16]. A large number of investigations exist dealing 
with the determination of the functional relationships (30) for the various layers of film 
flows [5, 16-18]. A detailed analysis of these investigations is contained in [15], and the 

use of the following three expressions is recommended. 

For the zone near the wall the van Driest formula [19] is recommended: 

= 1 - -  1 + 1 + 0,04 ReZNZ 1 - -exp (31)  
v 2 F-----r-- lO--4--17Fr]] J J 

where 

0 N ( ~ ' ( x _ ~ l ,  ~1 = 1201fF-r/Re. 

For the core of the turbulent flow, Reichardt's formula is used [20]: 

(32) 
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Fig. 2. The dimensionless temperature (a) 

and the dimensionless concentrations of 

the components (b) as functions of the 
length of the contact device for Re = 
i0,000; Fr = 218; Pr = i0; Sc~ = 1500; 

Sc~ = 2500; a I = i.i; a~ = 0.9, for vari- 
ous values of hi: curves 1-3: bl = 0.3, 
b 2 = --0.i (curve 1 for t, curve 2 for 

cl, curve 3 for c2); curves 4-6; b I = 
0.03, b 2 = -0.01 (curve 4 for t, curve 5 
for c1, curve 6 for c~); curves 7-9: 

b I = 0.003, b 2 = -0.001 (curve 7 for t, 
curve 8 for c~, curve 9 for c2); solid 
lines are for values in the core of the 

phase, and dashed lines are for values at 
the interface. 

R e  z 
v - K ~ (2~1 - -  ~1 ) (3 - -  4~1 + 2qa), ( 3 3 )  

in which the constant K is determined from the condition that the results calculated by Eqs. 

(31) and (33) should agree at the point q = ql which is given from Eq. (32). 

For the interfacial zone a modification of the formula by Lamourelle and Sandall [21] 
is recommended: 

8 
- -  3 , 1 5 3 .  l O - T F r - Z / a R e Z '  7~8 (1 - -  ~)~, ( 3 4 )  

v 

which is used over the range of variation of the dimensionless thickness from q = 1 to the 
value q = q2 at which the results of the calculations by Eqs. (33) and (34) coincide. 

In order to determine the profiles of the coefficient of turbulent diffusion from rela- 
tionships (31)-(34) it is necessary to set up two computational procedures. The first of 
these is intended for calculating the constant K in relationship (33) from the known values 
of Re and Fr and at D = qz. The second procedure determines the value of the dimensionless 
thickness q2 from the known values of Re and Fr and the value of K calculated in the first 
procedure. In the present work both procedures were carried out using Newton's method. 
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Thus, the solution of the dimensionless problem (22)-(27), taking (30)-(34) into 
account, is determined by the dimensionless parameters Re, Fr, Pr, Sc~, ai, bi, i = i, 2, 
..., n - i, i.e., it depends on 3n quantities. 

The solution is carried out by the method of marching using the finite-difference oper- 
ators [22] 

ow g (< j) -- ~ (k -- i ,i) 

a { 0 ( ~ ) ~ } =  1 / 0 ( i + I ) + 0 ( 1 ) [ w ( < i + l ) - w ( <  j)]-- 
OT I (A~) z 2 

_ o (h § o (f I~{< i)--~(~, i- I)]}, (35) 

where k, j are the numbers of the steps vertically and horizontally; 6~, AN are the corres- 
ponding sizes of the steps, and W and 0 represent respectively either t and o, or c i and E~, 
i = i, 2, .... n - i. 

In order to improve the accuracy of approximating the derivatives at the interfacial 
surface (Eq. (27)) use is made of a finite-difference analogy making it possible to approxi- 
mate with accuracies to the third order of smallness [23]: 

OW . ~=1 1 
0N 12 (1~1~ {8f (k) - -  18W (k, N - -  1) § W (k, N - -  2) § 9W (k, N)}, (36)  

where  N i s  t h e  number o f  s t e p s  a l o n g  t h e  h o r i z o n t a l  d i r e c t i o n ,  and f ( k )  i s  t h e  v a l u e  o f  t h e  
c o r r e s p o n d i n g  f u n c t i o n  on t h e  i n t e r f a c e  d e t e r m i n e d  f o r  any k by t h e  f o r m u l a  

:@)= w(< N--1)+w(<~) (37) 
2 

Having found  t h e  f i e l d s  o f  t h e  d i m e n s i o n l e s s  c o n c e n t r a t i o n s  o f  t h e  components  and tem- 
p e r a t u r e  by this method, it is possible to calculate the values of the wall, surface, and 
mean concentrations and temperature, the mass fluxes of the components and the heat flux at 
the interface, the coefficients of mass and heat transfer, etc. 

By way of an example, in the present paper we have investigated numerically the process 
of non-isothermal absorption of a two-component gas mixture by a nonvolatile turbulent film 
of liquid. Figures 1 and 2 give the characteristic dependences of the dimensionless tempera- 
ture and the dimensionless concentrations of the components on the length of the contact 
device for various values of the problem parameters. The solid lines show the temperature 
and concentration profiles in the core of the phase (tile integral-mean values over the thick- 
ness of the film), the dashed lines give the profiles of the free-surface values, and the 
dot-dashed lines give the profiles of the wall values. It can be clearly seen from the 
graphs that at some definite distance from the inlet of the contact device the heat and mass 
transfer process ends up giving equilibrium values of the concentrations and temperature. 
It is clear that then the corresponding values at the wall, in the core of the flow, and at 
the free interface become the same. 

The change from the dimensionless to the dimensional parameters of the problem is car- 
ried out by using Eqs. (19)-(21), and these in turn are converted into real values of the 
concentrations of the components and the temperature in the turbulent liquid film by using 
Eq. ( 1 7 ) .  

The p r o p o s e d  method o f  s o l v i n g  t h e  p ro b l em  makes i t  p o s s i b l e  in  t h e  f i r s t  p l a c e  t o  
determine for given initial values of the parameters the profiles of the concentrations of 
the components and the temperature at each cross-section of the contact device, and to deter- 
mine their free-surface, wall, integral-mean, and other values; in the second place, to 
determine the required length of the equipment; and in the third place, to investigate 
theoretically the effects of the parameters of the turbulent multicomponent heat and mass 
transfer process on the solution. 
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NOTATION 

T, temperature of the mixture; C , vector of the molar concentrations of the components 
of the mixture; C', concentration vector transformed by means of Eq. (17); [D], matrix of 
the coefficients of multicomponent molecular diffusion; [D'], diagonal matrix consisting of 
the eigenvalues of the matrix [D]; [E], matrix of the coefficients of multicomponent turbu- 
lent diffusion; [E'], diagonal matrix consisting of the eigenvalues of the matrix [E]; [L], 
fundamental matrix for [D] and [El; ~, coefficient of thermal conductivity; ~ , coefficient 
of temperature conductivity; o, coefficient of turbulent temperature conductivity; v, coef- 
ficient of dynamic viscosity; q, heat flux; N i, molar flux of i-th component; v, w, para- 
meters of the equilibrium relationship (5); AHi, difference of the molar enthalpies of the 
i-th component in the gaseous and liquid phases transported by its mass flux through the 
free interface; n, number of components in the mixture; h0, thickness of the liquid film; 
u, velocity of liquid film; u, mean velocity of liquid film; x, y, coordinates; ~, ~, cor- 
responding dimensionless coordinates; [I], unit matrix; Re = 4uh0/~ , Reynolds number; Fr = 
u2/h0g, Froude number; Pr=~/• , Prandtl number; Sc~ = v/D~, modified Schmidt number of the 
i-th component. 

SUBSCRIPTS 

0, value af the inlet to the contact device; e, equilibrium value; i, value for the 
i-th component. 

SUPERSCRIPTS 

', value transformed using the fundamental matrix; (T), notation for line vector. 
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